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Abstract: Discovering hidden geothermal resources is a very challenging task. It requires the mining of 
large datasets, including various diverse data attributes representing subsurface hydrogeological and 
geothermal conditions. The commonly used Play Fairway Analysis (PFA) typically relies on subject-matter 
expertise to analyze site or regional data to estimate geothermal conditions and prospectivity. Here, we 
demonstrate an alternative approach based on machine learning (ML) to process a geothermal dataset of 
Southwest New Mexico (SWNM). The study region includes low- and medium-temperature hydrothermal 
systems. However, most of these systems are poorly characterized because of insufficient existing data and 
limited past explorative studies. This study aims to discover hidden patterns and relationships in the SWNM 
geothermal dataset to better understand regional hydrothermal conditions. This is achieved by applying an 
unsupervised machine learning algorithm based on non-negative matrix factorization coupled with 
customized k-means clustering (NMFk). NMFk can automatically identify (1) hidden (latent) signatures 
characterizing datasets, (2) the optimal number of these signatures, (3) dominant data attributes associated 
with each signature, and (4) spatial distribution of the extracted signatures. Here, NMFk is applied to 
analyze 18 geological, geophysical, hydrogeological, geothermal attributes at 44 locations in SWNM. 
NMFk successfully finds data patterns and identifies the spatial associations of hydrothermal signatures 
with the four physiographic provinces in SWNM (Colorado Plateau, Volcanic Field, Basin and Range, and 
the Rio Grande rift). The algorithm identified up to 5 hydrothermal signatures in the SWNM datasets that 
differentiate between low- and medium-temperature hydrothermal systems in different provinces. Also, the 
algorithm identifies two medium-temperature hydrothermal systems in SWNM that require further 
exploration for geothermal resource development. Based on our analyses, 12 of the attributes are important 
to identify medium-temperature hydrothermal systems, and the remaining six attributes are critical to 
characterize low-temperature hydrothermal systems. Based on the obtained results, we identify potential 
physiographic provinces for further exploration to characterize them as geothermal resources. The resulting 
NMFk model can be applied to predict geothermal conditions and their uncertainties at new SWNM 
locations based on limited data from unexplored areas. 

Keywords: Geothermal energy, unsupervised machine learning, non-negative matrix factorization, custom 
k-means clustering, feature extraction, hidden (latent) signatures, hidden geothermal resources. 
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1. Introduction 

Typically, hidden hydrothermal systems lie at a few kilometer depths below the ground surface, and they 
may have deep water tables or being sealed by overlying thick rock that precludes the flow of hot water and 
heat towards the ground surface (Dobson et al., 2016; Porro 2012; Anderson et al., 2013, Brott, 1981; 
Williams et al., 2009; Smith et al., 2004). Due to the lack of hydrothermal features at the ground surface, 
identifying hidden geothermal resources is challenging. A commonly used approach for geothermal 
exploration of hidden resources is based on Play Fairway Analysis (Siler et al., 2017, 2019; Faulds et al., 
2015, 2018, 2019; Lautze et al., 2017, 2020; McClain et al., 2015; Shervais et al., 2015, 2017).  
 
PFA evaluates geothermal prospectivity by assimilating various geological, geophysical, geochemical, and 
geothermal attributes at site and regional scales. The latter attributes provide direct geothermal evidence 
and are based on actual measurements such as temperatures at different depths, heat flow, thermal gradients, 
etc. However, the direct measurements of geothermal attributes are often challenging and expensive to 
acquire. PFA typically relies on subject-matter expertise to process and analyze the available data and make 
conclusions about geothermal prospectivity. Ultimately, this can produce bias in the interpretations and 
limits the amount of data that can be efficiently mined. The general challenges of PFA applications relate 
to how to (1) unravel unknown relationships between analyzed geothermal data attributes, and (2) identify 
important easy-to-measure attributes that can be applied to estimate geothermal reservoir properties and 
prospectivity at new unexplored locations. 
 
To address these challenges, here, we propose an alternative PFA approach that incorporates artificial 
intelligence and machine learning (ML) methods to process the existing data and to find the hidden 
relationships in the data without interpretive biases. To achieve this, we need an ML methodology that can 
efficiently analyze all available site or regional data to learn unknown hidden (latent) relationships between 
geothermal reservoir properties and other more accessible and cheaper to acquire attributes (e.g., drainage 
density, shallow groundwater geochemistry, etc.). Also, the methodology should (1) provide a better 
understanding and robust prediction of geothermal conditions, and (2) allow for discovering hidden 
geothermal resources without human intervention. This alternative PFA approach is demonstrated here to 
a geothermal dataset of southwest New Mexico (SWNM). Through this approach, we discover hidden 
geothermal signatures, their dominant attributes, and the spatial association of each hidden signature. 
Moreover, the spatial distribution of low- and medium-temperature hydrothermal systems has also been 
identified.  
 
Section 2 below provides background for this study. In Section 2.1, we discuss various ML methods that 
can be applied to discover hidden geothermal resources and their strengths and weaknesses. Section 2.2 
presents the applied ML methodology called NMFk. Section 2.3 discusses the regional dataset involved in 
this study. Section 3 summarizes the obtained ML results. Subsection 3.1 describes how the optimal number 
of signatures is chosen. Subsection 3.2 explains the geothermal significance of the extracted hidden 
signatures. Subsection 3.3 characterizes two medium-temperature hydrothermal systems that require further 
exploration. Finally, we present our conclusions in Section 4. 
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2. Background  

2.1 Machine Learning  

ML methods, in general, can be subdivided into supervised and unsupervised. The supervised methods 
require attributes and corresponding labels of the analyzed data (Muller et al., 2016; Rouet-Leduc et al., 
2020; Johnson et al., 2021). The labeling should be done by subject-matter experts who can identify, for 
example, locations with high-, intermediate-, and low-temperature geothermal prospectivity or specific 
geologic features such as fault offsets. The labeling process can also be automated by unsupervised ML 
(Muller et al., 2016). The supervised methods are then applied to learn geothermal prospectivity based on 
the available data. However, the successful training of supervised methods requires large, continuous 
(without data gaps), non-noisy (with small measurement errors) training datasets that are typically not 
available for geothermal exploration. Commonly-used supervised methods include deep neural networks 
(Yoshinki et al., 2014), convolutional neural networks (Gu et al., 2018), recurrent neural networks (Medsker 
& Jain, 1999), and random forest (Breiman, 2001). 

In contrast, the unsupervised ML techniques extract information from existing datasets without any prior 
labeling or subject-matter preprocessing. The extracted information is post-processed by subject-matter 
experts to identify the physical meaning of the results. Commonly used unsupervised methods include 
singular value decomposition (SVD) (Klema & Laub, 1980), principal component analysis (PCA) (Wold 
et al., 1987), independent component analysis (ICA) (Comon, 1994), k-means clustering (Hartigan & 
Wong, 1979), Gaussian mixture models (Friedman et al., 2001), non-negative matrix/tensor factorization 
(NMF/NTF) (Lee & Sung, 1999), and non-negative matrix/tensor factorization with customized k-means 
clustering (NMFk/NTFk; https://smarttensors.github.io; Alexandrov & Vesselinov, 2014; Vesselinov et al., 
2018). 

One or more unsupervised machine learning methods can be applied for finding hidden patterns in a 
geologic/geothermal dataset. For example, Watson (2020) utilized k-means clustering on infrasound signals 
to characterize volcanic eruption activity; Anzieta et al. (2019) used k-means clustering, correntropy, and 
dynamic time warping to understand the precursor of the 2015 Cotopaxi volcano eruption. Alexandrov & 
Vesselinov (2014) and Vesselinov et al. (2018, 2019) applied NMFk for blind source separation and 
extraction of physics insights about complex geologic systems. Unsupervised ML also has been used to 
characterize hydrothermal systems. For example, PCA and NMFk have been used to identify geologic 
factors that control flow in the Brady, Nevada, geothermal site (Siler & Pepin, 2021; Siler et al., 2021). 
Ahmmed et al. (2020 a-d) identified hidden geothermal signatures at the Utah FORGE site, the Great Basin, 
and Hawaii Islands, while Vesselinov et al. (2020 a, b) successfully identified hidden geothermal signatures 
in eight geothermal datasets of the U.S. geothermal reservoirs. As our recent work suggest, the application 
of NMFk to diverse multi-source, multi-scale, and multi-physics geothermal datasets may lead to the 
discovery of funknown geothermal signatures. These discovered signatures can be applied to improved 
detection of hidden geothermal resources. 

Here, we applied NMFk to analyze an existing SWNM geothermal dataset. NMFk is capable of identifying 
(i) the optimal number of hidden signatures in data, (ii) the dominant set of attributes in data that correspond 
to identified hidden signatures, and (iii) locations associated with each hidden signature. To discover hidden 
signatures along with their optimal number in large geothermal datasets, NMFk is at the forefront among 
various unsupervised ML methods such as NMF, PCA, ICA, SVD and its variants, k-means clustering, and 
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Gaussian mixture models. In contrast, with traditional NMF (Lee & Seung 1999), NMFk allows for 
automatic identification of the optimal number of signatures (features) present in the data (Vesselinov et 
al., 2018). Since the data attributes analyzed here are transformed to be non-negative, NMFk preserves non-
negativity when extracting hidden signatures. The non-negativity constraint makes the decomposed 
matrices easier to interpret than PCA, SVD, and ICA because the extracted signatures are additive. 
Moreover, NMFk can handle real, categorical, and missing data (challenging or impossible with other 
supervised and unsupervised ML methods). Even more importantly, the missing data (some or all of it) can 
be reconstructed from available data based on the estimated matrix factorization.  

2.2 NMFk 

NMFk performs matrix factorization of a data matrix, 𝑋!×#, where the m rows represent here measurement 
locations, and the n columns are the values of the geothermal attributes. The goal of NMFk is to find the 
optimal number of signatures k that describe the analyzed dataset. This is accomplished by matrix 
factorization, which can be represented as using:  

 𝑋	 ≅ 	𝑊 × 𝐻 (1) 
where 𝑊!×$ is an “attribute” matrix characterizing the significance of attributes and 𝐻$×# a “location” 
matrix captures the significance of locations and their spatial association. It is important to note that all the 
elements of matrices W and H are unknown. The number of signatures k is also unknown. The matrix 
factorization in (1) provides an approximate representation of the data X. To solve for all the unknowns, 
NMFk performs a series of matrix factorization with random initial guesses for W and H elements and for 
a range of values of k; theoretically, k can range between 2 and min(m,n). For a given number of signatures 
𝑘, Equation 1 is solved iteratively by minimizing the reconstruction error 𝑂(𝑘): 

 𝑂(𝑘) 	= ||	𝑋	 − 	𝑊 × 𝐻||% (2) 
by constraining the W and H elements to be greater or equal to zero and F defines the Frobenius matrix 
norm (Böttcher & Wenzel, 2008). Under the NMFk algorithm, NMF is executed numerous times (typically 
1,000), which generates a series of solutions for W and H matrices for a given k value. The resulting multiple 
solutions of 𝐻 are clustered into 𝑘 clusters using a customized 𝑘-means clustering. The average silhouette 
width 𝑆(𝑘) based on cosine norm is computed for all k clusters. This metric (see Vesselinov et al. 2018) 
measures how well the random NMF solutions are clustered for a given value of 𝑘. The values of 𝑆(𝑘) 
theoretically can vary from -1 to 1. 

These operations are repeated for a series of k values. The optimal number of signatures, k, is estimated on 
how the reconstruction error𝑂(𝑘) and the average silhouette width, 𝑆(𝑘), vary with the increase of k. The 
reconstruction error decreases as the number of signatures increases. The average silhouette width behavior 
is more complicated; 𝑆(𝑘)generally declines as the number of signatures increases from 1 to -1. However, 
𝑆(𝑘) values frequently spike up for specific k values, indicating that these k values are potentially optimal. 
In an ideal case, a given k value is considered optimal when adding another signature does not significantly 
improve the estimate of X (i.e., lower 𝑂(𝑘)) and does not lower 𝑆(𝑘). In practice, a solution with 𝑆(𝑘) 
greater than 0.5 and the lowest 𝑂(𝑘) value can be chosen as an optimal solution. The solutions with k values 
less than the optimal value and S(k) values > 0.5 are acceptable; they provide underfitting representations 
of the data matrix X. All the solutions with k values greater than the optimal value are not acceptable; they 
provide overfitting representations of the data matrix X. Implementation of the NMFk algorithm and details 
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related to the selection of the optimal solution are further discussed in Alexandrov and Vesselinov (2014), 
and Vesselinov et al. (2018, 2019). The NMFk results are summarized using different analytical and visual 
methods discussed in the discussion section below. 

 

2.3 Test dataset 

This study analyzes a geothermal dataset of SWNM. SWNM is broadly divided into four physiographic 
provinces: the Colorado Plateau, the Mogollon-Datil Volcanic Field (MDVF), the Basin and Range, and 
the Rio Grande rift (Bielicki et al. 2015, 2016; Pepin, 2019). Each physiographic province is associated 
with different types of unique hydrothermal systems with temperatures ranging from low (<90℃) to 
medium (90-150℃) (Vesselinov et al., 2020, 2021; Pepin, 2019; Bielicki et al., 2015). Some of the SWNM 
systems are already utilized for commercial and recreational purposes. At 23 locations, energy-extraction 
facilities are providing both electricity and direct-use heating. For example, the Basin and Range province 
has one geothermal power plant (Lightning dock) of gross ~14 MWe power, five greenhouse farms (Kelley, 
2010), and numerous medium temperature wells and springs. There are 14 spas and recreational facilities 
utilizing the SWNM geothermal resources (Kelley, 2010). Recent Play Fairway Analysis (PFA) Phase I 
study of SWNM revealed more potential geothermal resources (Bielicki et al. 2015, Bennett & Nash, 2017, 
Levitte & Gambill, 1980).  
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Figure 1: The study area is southwest New Mexico. The red dots show known 44 locations where data 
were collected for this study (after Pepin 2019). Filled black color stars represent cities, while open 
stars represent moderate-temperature hydrothermal systems. GHS, LD, and RHS stand for Gila hot 
springs, lightning dock geothermal plant, and Radium hot springs, respectively. 

 
The analyzed dataset includes two geochemical, two geophysical, five geological, four hydrogeological, 
and four geothermal attributes (total 18) at 44 locations in SWNM (Figure 1). Each attribute has significance 
for discovering geothermal signatures, as discussed in detail in Table 1. One of the attributes is the reservoir 
temperature estimates based on silica geothermometry (Bielicki et al., 2015). Boron (Bielicki et al., 2015) 
and lithium (Bielicki et al., 2015) are tracer elements in thermal water. Drainage density (Bielicki et al., 
2015), spring density (USGS, 2018a), hydraulic gradient (Bielicki et al., 2015), and precipitation (Bielicki 
et al., 2015) are hydrogeological attributes. Gravity anomaly (Bielicki et al., 2015), magnetic intensity 
(Bielicki et al., 2015), and seismicity (Bielicki et al., 2015) are geophysical attributes. Silica 
geothermometer (Bielicki et al., 2015) temperature and heat flow (Bielicki et al., 2015) are geothermal 
attributes. Geological attributes include crustal thickness (Keller et al., 1991), depth to the basement (Person 
et al., 2013), fault intersection density (Pepin, 2019), quaternary fault density (Pepin, 2019), state map fault 
density (USGS, 2018b), volcanic dike density (USGS, 2018b), and volcanic vent density (UNM, 2018). The 
data are preprocessed prior to the ML analyses. The boron and lithium concentration values are log-
transformed to narrow down the distribution of values. The values of each attribute at each location are 
shown in Table 2. Next, all attributes are rescaled within the range of 0.0 to 1.0 using unit range 
transformation. To apply NMFk, we create a 44x18 matrix (𝑋!×#) where the m = 44 rows represent each 
location, and the n = 18 columns are the values of the measured attributes.  

Table 1. List of geothermal data attributes and their significance for geothermal resource 
exploration, units, and log-transformation flags. 

Attribut
e 
number 

Attribute Measurement 
type 

Significance for geothermal 
resource exploration Unit 

Log 
transf
ormati
on 

1 B+ concentration Geochemical Potentially represents deep heat 
source mg/L Y 

2 Li+ concentration Geochemical Potentially represents deep heat 
source mg/L Y 

3 Drainage density Hydrogeological 

Represents the structure of surface 
water flow; it may also represent 
groundwater recharge areas and the 
existence of geologic structures 
influencing the shape of the drainage 
network 

m/m2 N 

4 Springs density Hydrogeological 
Represents the occurrence of 
conduits of groundwater from depth 
to the ground surface 

m/m2 N 

5 Hydraulic Hydrogeological Slope of the water table along the [-] N 
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gradient direction of maximum head 
decrease; it characterizes the 
magnitude of groundwater flow 

6 Precipitation Hydrogeological The primary source of groundwater 
recharge inch N 

7 Gravity anomaly Geophysical 

It may represent secondary 
mineralization. It also characterizes 
the geologic structure (Beihmer 
1971; Kratt et al. 2011) 

mGal N 

8 Magnetic intensity Geophysical 

May represent secondary 
mineralization, and in some events, 
they characterize the geologic 
structure 

A/m N 

9 Seismicity Geophysical Represents seismotectonic conditions Richter N 

10 Silica 
geothermometer  Geothermal The potential temperature of 

subsurface reservoirs ℃ N 

11 Heat flow Geothermal Represents deep heat source 
properties mW/m2 N 

12 Crustal thickness Geological Represents proximity of the deep 
heat source (Earth’s mantle) m N 

13 Depth to the 
basement Geological 

Represents the thickness of the 
potential geothermal reservoir and 
the depth of a potential deep heat 
source 

m N 

14 Fault intersection 
density Geological 

Represents connection of fault 
networks; the higher the density, the 
better for sustainable geothermal 
play development (Faulds et al. 
2018)  

m/m2 N 

15 Quaternary fault 
density Geological 

Faults may act as conduits of: (1) 
groundwater flow water from depth 
to the ground surface as well as (2) 
groundwater recharge  

m/m2 N 

16 State map fault 
density Geological Significance is the same as above m/m2 N 

17 Volcanic dike 
density Geological Represent subsurface manifestation 

of volcanic events m/m2 N 

18 Volcanic vent 
density Geological Occurrence of volcanic eruptions m/m2 N 

 

Table 2. Geothermal data applied for NMFk analysis. The table shows a transposed version of the 
data matrix (X) representing observations of 18 attributes (columns) over 44 locations in the study 
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area (rows). The values along each column are color coded (green, yellow, and red colors represent 
minimum, intermediate and maximum values, respectively). 

 

3. Results and Discussion 

3.1 Identification of the Optimal Number of Signatures 

For the problem analyzed here, the reconstruction error, 𝑂(𝑘), decreases as the number of signatures 
increases (Figure 2). However, the average silhouette width, 𝑆(𝑘), does not follow this pattern. 𝑆(𝑘) 
fluctuates over the number of signatures, as shown in Figure 2. In general, solutions with 𝑆(𝑘)greater than 
0.5 can be considered to be acceptable. Based on this criteria, the solutions for k=2, 3, 4, and 5 were 
accepted, while the k > 5 solutions were rejected by the algorithm. The solutions for k > 5 are overfitting 
the analyzed dataset. The solution for k=5 is the optimal one because of its reasonably low 𝑂(𝑘) and 
high𝑆(𝑘)values. Still, there are general consistencies in the solutions for k=2, 3, 4, 5, and 8, where all these 
solutions have relatively high 𝑆(𝑘)value (>0.5). The relations between signatures extracted by these 
solutions are further discussed in Appendix A. The analyses in the appendix confirm our conclusion that 
the k=5 solution is optimal for the studied problem. However, all acceptable solutions (for k=2, 3, 4, and 5) 
can be applied to describe the dataset. Furthermore, the solution with the optimal number of signatures is 
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expected to provide the best physical interpretability of the analyzed data matrix. Below, we focus on the 
spatial association of the extracted signatures within the study area. 

 

Figure 2: NMFk results for normalized reconstruction error (fit) 𝑂(𝑘)in red color and solution 
robustness (based on the average silhouette 𝑆(𝑘) width of the clusters) in blue color for different 
numbers of signatures 𝑘. 

Figure 3 shows the predominant association of the 44 measurement locations with the extracted geothermal 
signatures for solutions with k=2, 3, 4, 5, and 8. 

The NMFk solution for k=2 separates the Colorado Plateau and the Volcanic Field (Signature A) from the 
Basin and Range and the Rio Grande Rift (Signature B) provinces (Figure 3a). 

The k=3 solution combines the Colorado Plateau and the Volcanic Field in Signature A; however, 
Signatures B and C separate the Basin and Range and the Rio Grande Rift provinces, respectively (Figure 
3b). 

Signature A of the k=4 solution (Figure 3c) represents the Volcanic Field. Signature B captures the Basin 
and Range province. Signature C coincides with the Colorado Plateau. Signature D encompasses the Rio 
Grande Rift zone (Figure 3c). 

The k=5 solution (Figure 3d), regrouped the four signatures of the k=4 solution into five signatures. 
Signatures A and E cover MDVF; Signatures B, C, and D capture the remaining three provinces: the Basin 
and Range, the Colorado Plateau, and the Rio Grande rift provinces, respectively (Figure 3d). Signature A 
encompasses the area below the Jemez lineament (we call it the southern MDVF). In contrast, Signature E 
covers the Jemez lineament and its contiguous north area (we call it the northern MDVF). 

In the k=8 solution (Figure 3e), Signature B captures the Colorado Plateau province. Signatures G and H 
encompass two separate areas in the Rio Grande rift zone (Figure 3e). Signatures A, C, and D capture the 
spatial variability of geothermal conditions within MDVF, while Signatures E and F do the same for the 
Basin and Range province. 
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The solution progression with increasing k demonstrates the power of our method to further refine the 
spatial characterization of the analyzed geothermal data. There is a general consistency between all the 
acceptable solutions (k=2, 3, 4, 5, and 8). The solutions for k = 2, 3, and 4 provide a higher-level 
generalization of the geothermal signatures, while the k=8 solution allows us to further refine the 
characterization of the extracted geothermal signatures. It should be noted that none of the signatures of the 
k=2, 3, 4, 5, and 8 solutions perfectly represent physiographic associations. It appears that some of the 
locations outside but in close vicinity of a given province have associated signatures. This observation 
signifies that the extracted signatures are less distinct in terms of their physiographic province association 
as the number of signatures increases. However, the addition of more signatures in the NMFk solutions 
refines the characterization of geothermal characteristics in the study area; therefore, the solutions for k=2, 
3, 4, 5, and 8 can be applied to explain the dataset. Because the k=5 solution captures sufficiently well 
characteristics of both hydrothermal systems and physiographic provinces, this confirms our analyses above 
that this solution can be selected to be the optimal one.  
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Figure 3: Spatial distribution of signatures associated with the NMFk solutions for signature (a) 2, 
(b) 3, (c) 4, (d) 5, and (e) 8.  

 

3.2 Interpretation of the NMFk solution with the optimal number of signatures 

This subsection provides a high-level interpretation of each signature in the optimal k=5 solution (Figure 
4-5). We categorize each signature as low- or medium-temperature hydrothermal systems based on the 
contribution of silica geothermometer in each signature: low and high silica values define low- and 
medium-temperature systems, respectively). We also describe how geology, hydrogeology, and geothermal 
attributes relate to each other in each signature and how they define the hydrothermal systems within the 
study area.  

 

Figure 4: NMFk attribute matrix for the k=5 solution. High-value matrix entries (red) define high 
significance, while low-value matrix entries (green) represent low significance. High and low values 
of silica geothermometer indicate medium- and low-temperature geothermal resources, respectively.   
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Table 3: Geothermal hidden signatures and their association with a geothermal resource type, 
physical significance, dominant data attributes (Figure 4), and physiographic provinces (Figures 1 
and A-1).  

Signat
ure 

Hydrothermal 
system type Dominant attributes Physical 

significance 
Physiographic 
province  

A Low temperature 

Gravity anomaly 
Magnetic intensity 
Volcanic dike density 
Drainage density 
Li+ concentration 

Shallow heat flow Southern MDVF 

B Medium temperature 

B+ and Li+ concentrations 
Gravity anomaly  
Magnetic intensity 
Quaternary fault density 
Silica geothermometer 
Heat flow 
Depth to the basement 

Deep heat flow Rio Grande rift 

C Low temperature 

B+ and Li+ concentrations 
Magnetic intensity 
Drainage density 
Crustal thickness 

 
Deep heat source 
 

Colorado Plateau 

D Low temperature 

Drainage density 
Fault intersection density 
Seismicity 
State map fault density 
Spring density 
Hydraulic gradient 

Tectonics Rio Grande rift 

E Medium temperature 

Drainage density 
State map fault density 
Precipitation 
Silica geothermometer 
Hydraulic gradient 

Vertical hydraulics Northern MDVF 

 

Signature A is potentially representative of low-temperature hydrothermal systems because of the low 
contribution of silica geothermometer. This signature’s dominant attributes are gravity anomaly, magnetic 
intensity, volcanic dike density, drainage density, and Li+ concentration (Table 3). Volcanic dike density, 
gravity anomalies, magnetic intensity indicate the manifestation of plutonic mafic rocks due to Tertiary 
volcanic events (Nakai et al., 2017, Figure 5). The locations associated with Signature A are in the southern 
MDVF. This portion of the MDVF has a history of active volcanism in the past (Cather, 1990; McIntosh et 
al. 1992; Chapin et al. 2004; Ratté & Grotbo, 1979) that might have further enhanced Volcanic dike density 
and secondary mineralization. The resultant secondary mineralization is expected to elevate gravity 
anomaly and magnetic intensity in this region. The dominant attributes except drainage density are 
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indicators that the hydrothermal systems in this region are prospective geothermal resources. Yet, NMFk 
did not diagnose the locations associated with Signature A as medium-temperature hydrothermal systems 
because of low silica geothermometer contribution to this geothermal signature. A possible explanation 
might be the lack of high-temperature gradient in this area due to increased infiltration caused by high 
drainage density.  

Signature B potentially represents medium-temperature hydrothermal systems because of the high 
contribution of silica geothermometer. The other dominant attributes of this signature are B+ and Li+ 
concentrations, gravity anomaly, magnetic density, quaternary fault density, heat flow, and depth to the 
basement (Table 3). Heat flow and depth to the basement are unique dominant attributes of this signature. 
Heat flow is also an indicator of temperature gradient, while depth to the basement is an indicator of a high 
reservoir depth and a large distance of the heat source distance from the ground surface. The locations 
associated with Signature B fall in the southern Rio Grande Rift; there is also one location in the Basin and 
Range province, suggesting an extension of this rift signature within the Basin and Range. The area covered 
by Signature B went through frequent Tertiary and some Quaternary volcanic events (Nakai et al., 2017). 
Therefore, it is not surprising that magnetic intensity, gravity anomaly, and volcanic dike density are 
dominant attributes. This area also has a low crustal thickness (Elston et al. 1976; Nakai et al. 2017; Olson, 
1979; Sanford, 2002), which indicates that this area is also closer to the mantle heat source. Depth to the 
basement is the deepest in the study area that may assist in entrapping the heat originating from the mantle. 
The high-temperature gradient, deep basement, and lower-crustal thickness may be the potential cause of 
the medium-temperature hydrothermal systems in this region. Further field explorations and data collection 
activities are required to better define the locations associated with this geothermal signature and associated 
hydrothermal resources. 
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Figure 5: Locations associated predominantly with the five signatures A, B, C, D, and E. Filled black 
color asterisks represent cities while open asterisks represent moderate-temperature hydrothermal 
locations. GHS, LD, and RHS stand for Gila hot springs, Lightning Dock geothermal plant, and 
Radium hot springs, respectively.  

Signature C represents low-temperature hydrothermal systems because of the low contribution of silica 
geothermometer. The dominant attributes of this signature are B+ and Li+ concentrations, magnetic 
intensity, drainage density, and crustal thickness (Table 3). B+ and Li+ may be released from the subsurface 
due to the nearby heat source, while magnetic intensity may indicate secondary mineralization due to 
Tertiary volcanic events, which may produce plutonic mafic rocks (Hunt, 1956; Thompson & Zoback, 
1979; Lucchitta, 1979). These three attributes suggest potential heat sources at depth. Drainage density and 
crustal thickness are a unique combination of attributes for this signature, indicating that it might represent 
lateral hydraulics. The locations associated with Signature C are within the Colorado Plateau. However, the 
high significance of B+ and Li+ concentrations, magnetic intensity, drainage density in this signature are 
good indicators of geothermal resources. NMFk did not designate this signature as medium-temperature 
hydrothermal systems due to low silica geothermometer impact on this geothermal signature . The large 
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crustal thickness may preclude heat flow in this region that might be a potential explanation for the 
designation as low-temperature hydrothermal systems.   

Signature D represents low-temperature hydrothermal systems because of the low contribution of silica 
geothermometer. The dominant attributes of this signature are drainage density, fault intersection density, 
seismicity, state map fault density, spring density, and hydraulic gradient (Table 3). Fault intersection 
density, seismicity, and state map fault density suggest that this signature  represents tectonic features. The 
locations associated with this Signature D are in the Rio Grande Rift and the Jemez lineament, which went 
through both extension and subduction tectonic events (Nakai et al., 2017; Olson, 1979; Sanford, 2002). 
Active tectonic events increase fault intersection density, which increases drainage density, fault 
intersection density, spring density, and hydraulic gradient. Also, seismicity indicates the presence of active 
faults. This signature did not get high contribution from attributes, which are well indicators of medium-
temperature hydrothermal systems such as B+, Li+, gravity anomaly, magnetic intensity, heat flow, and 
silica geothermometer. The dominant attributes indicate that the locations associated with this signature 
have good groundwater flow characteristics. They do not necessarily indicate amenable to being good 
hydrothermal systems for further exploration.   

Signature E represents medium-temperature hydrothermal systems because of the high contribution of 
silica geothermometer. The remaining dominant attributes of this signature are drainage density, state map 
fault density, precipitation, and hydraulic gradient (Table 3). State map fault density and hydraulic gradient 
represent deep flow circulation, meaning that this signature may capture vertical groundwater flow 
characteristics. The locations associated with this signature are in or around the Jemez lineament within the 
northern part of the MDVF. The Jemez lineament went through rigorous Tertiary and Quaternary volcanism 
events. Also, this region has an intensive tectonic history when compared to the surrounding areas. Both 
high volcanism and tectonic events make this area more amenable to have geothermal resources. In 
addition, this area has high precipitation, which increases deep flow circulation. A fluid circulation from 
the depth where hot water exists is a good indicator of good hydrothermal systems. Another possible 
explanation is that crustal thickness is lower than the Colorado Plateau (Cather, 1990; McIntosh et al., 1992; 
Chapin et al., 2004; Ratte, 1989; Pepin, 2019). Another critical factor is that the depth to the basement is 
high, although it is not visible in this signature. Deep depth to the basement along with deep fluid circulation 
characteristics may be the potential cause of medium-temperature hydrothermal systems in the northern 
MDVF. Further field explorations and data collection activities are required to better define the locations 
associated with this geothermal signature and associated hydrothermal as geothermal resources.  

Based on the discussion presented above, among 18 analyzed attributes, the 12 dominant attributes related 
to medium-temperature hydrothermal systems are B+ and Li+ concentrations, silica geothermometer, heat 
flow, gravity anomaly, magnetic intensity, quaternary fault density, state map fault density, depth to the 
basement, drainage density, precipitation, and hydraulic gradient. All of these attributes are related to 
geothermal signatures B and E (Table 3). The remaining six attributes are volcanic dike density, volcanic 
vent density, fault intersection density, springs density, crustal thickness, and seismicity. These attributes 
are dominant in the signatures A, C and D (Table 3), which represent low-temperature hydrothermal 
systems.   

3.3 Characterization of Medium-temperature Hydrothermal Systems 

The subsection provides a high-level explanation of the uniqueness of two medium-temperature 
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hydrothermal systems designated by our NMFk analyses. NMFk extracts geothermal signatures and also 
estimates the significance of attributes and locations to define these signatures. To show the correlations 
between the signatures, a series of biplots are generated by pairing each of the extracted signatures. In this 
analyses, the signatures are viewed as basis vectors similarly to how eigenvectors under PCA analyses are 
defined (Wold et al., 1987). A biplot is an exploratory scatterplot showing the mutual relation between two 
signatures based on how attributes and locations associated with these signatures are weighted. In a biplot, 
an attribute is well correlated if its significance is high for both signatures. In contrast, some attributes might 
be important for one signature but not for another signature. A biplot is also a good indicator if an attribute 
is not critical for both signatures; these attributes will be located close to the plot origin. In a biplot, well-
correlated attributes lie on the diagonal between the two axes and away from the origin, while uncorrelated 
attributes lie close to the axes. 

Figure 6 demonstrates the correlation of attributes between two medium-temperature geothermal Signatures 
B and E. Here, the only correlated attribute is the silica geothermometer, which classifies these signatures 
as medium-temperature hydrothermal systems. This lack of correlation among the other geothermal 
attributes reveals that they are uniquely associated with Signatures B and E, respectively. Because the 
geology of each province is unique, their controls on hydrothermal systems also vary. Signature B falls 
mainly in the southern Rio Grande Rift zone. The hydrothermal system of this area is primarily defined by 
gravity anomaly, depth to the basement, B+ and Li+ concentrations, and heat flow. On the other hand, 
Signature E falls in the northern MDVF, which is in the northern portion of the study area. Hydrothermal 
systems in this area are defined by precipitation, hydraulic gradient, state map fault density, state map fault 
density, and drainage density.  

As mentioned above, the geological, geophysical, hydrological, and geothermal characteristics of 
Signatures B (the northern MDVF) and E (Rio Grande rift) are distinct. Both areas went through Tertiary 
and Quaternary volcanisms, but the northern MDVF went through more frequent volcanic events than the 
Rio Grande rift zone. Also, the northern MDVF is tectonically more active than the Rio Grande Rift zone. 
However, a tectonic extension feature is present between the western and easter portions of the Rio Grande 
rift zone that is absent in the northern MDVF. Moreover, the Rio Grande Rift zone has a lower crustal 
thickness than the northern MDVF. All these observations demonstrate the unique geological and 
hydrological characteristics of the two regions. Therefore, they represent unique hydrothermal systems, and 
these differences were successfully captured by NMFk in the extracted geothermal signatures.  
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Figure 6: Biplot showing the correlation between attributes for medium-temperature resources as 
defined by Signatures B and E (Table 3). Attributes that fall along the axes are not correlated. If 
attributes lie near the origin, they are low correlated; if diagonally away from the origin, they are 
highly correlated. Arrows indicate the locations of attributes.  

4. Conclusions 

Using an unsupervised ML, this study characterized a geothermal dataset of SWNM to (1) identify hidden 
geothermal signatures, (2) estimate the optimal number of signatures, (3) find dominant attributes 
associated with each signature, (4) map spatial association of the signatures. Based on the obtained results, 
we identify potential physiographic provinces for further exploration to characterize them as geothermal 
resources. The dataset consists of 18 geothermal attributes measured at 44 locations. The locations represent 
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hydrothermal systems within the four physiographic provinces present within the SWNM study domain. 
On purpose, the analyses did not include the labeling of the hydrothermal systems based on their type and 
their association with physiographic provinces. In this way, we tested if the algorithm can blindly group the 
locations based on their type and province association just utilizing the provided data about observed 
geothermal attributes. The applied unsupervised ML tool is called NMFk, and our analyses extracted a 
series of geothermal signatures. The solutions for the number of signatures, k, equal to 2, 3, 4, 5, and 8, can 
explain the dataset with respect to low/medium-temperature resources. Among these solutions, the k=5 
result provides the best characterization of the SWNM geothermal conditions. The optimal number of 
signatures is automatically identified by the algorithm. The five signatures under this solution are labeled 
as A, B, C, D, and E, and based on our analyses, they directly associate with the geothermal prospectivity 
of the SWNM study area.  

Each signature of k=5 solutions has been categorized as low- or medium-temperature hydrothermal systems 
based on the contribution of silica geothermometer on the corresponding signature. In summary, Signature 
A represents low-temperature hydrothermal systems, and it includes locations in the southern MDVF. The 
dominant attributes are gravity anomaly, magnetic intensity, volcanic dike density, drainage density, and 
Li+ concentration that are expected to characterize shallow heat flow. Signature B depicts medium-
temperature hydrothermal systems, and it covers locations in the southern Rio Grande Rift zone and the 
Basin and Range province. The dominant attributes are B+ and Li+ concentrations, gravity anomaly, 
magnetic density, quaternary fault density, silica geothermometer, heat flow, and depth to the basement 
that potentially indicate deep heat flow. Signature C defines low-temperature systems, and it captures 
locations in the Colorado Plateau. The dominant attributes are B+ and Li+ concentrations, magnetic 
intensity, drainage density, and crustal thickness that likely demonstrate the existence of deep heat sources. 
Signature D represents low-temperature hydrothermal systems, and it covers locations in the Rio Grande 
Rift and the Jemez lineament in MDVF. The dominant attributes are drainage density, fault intersection 
density, seismicity, state map fault density, spring density, and hydraulic gradient that predominantly 
capture the occurrence of tectonic activities and the potential of upward groundwater flow. Signature E is 
associated with medium-temperature hydrothermal systems, and it covers the northern MDVF. The 
dominant attributes are drainage density, state map fault density, precipitation, silica geothermometer, and 
hydraulic gradient that likely portray vertical downward (recharge) fluid flow.      

Out of five signatures, only two signatures (B and E) are associated with medium-temperature features. 
Those two signatures are connected to a heat source such as Signature B is located mainly in the Rio Grande 
Rift zone, including one location in the Basin and Range province where there is a high heat gradient. It is 
critical to mention here that only powerplant in New Mexico is located in the Basin and Range province. 
This successful identification of correct hydrothermal system types without prior knowledge demonstrates 
the usefulness of the proposed ML methodology based on NMFk. Signature E, another medium-temperature 
geothermal signature, is located in the northern MDVF, where heat and hot groundwater may originate 
from the depth and reach the ground surface through faults.  

The northern MDVF and the Rio Grande rift zones required further exploration to designate them as 
geothermal resources. The PFA work by Bielicki et al. (2015) generated a preliminary geothermal 
prospectivity map. In the future, we will combine PFA results and the knowledge accumulated in this study 
to make an ML-enhanced geothermal prospectivity map of the SWNM region. This map will assist in 
discovering hidden resources and their accurate locations for geothermal heat extraction using well drilling. 
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To conclude, the extracted dominant signatures by NMFk indicate dominant attributes to identify 
hydrothermal systems in each province. Moreover, the proposed NMFk analysis is widely applicable to 
extract signatures (signals) from large-scale geothermal data (including observational and simulation 
outputs). This broad applicability of our ML tools makes it attractive for researchers in the geothermal 
industry and institutions to use these tools to discover, quantify, and assess hidden geothermal energy 
resources. Our algorithms are open source, and examples, test problems, notebooks, and documentation are 
available at https://smarttensors.github.io  
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Appendix A: Discussion of the NMFk solutions for different number of signatures 

NMFk analyses provided solutions for a different number of signatures. The optimal number of signatures 
is equal to 5, as discussed in Section 3.1. However, there is a general consistency between the extracted 
geothermal signatures. Here, we demonstrate these consistencies in the solutions for k=2, 3, 4, 5, and 8; all 
these solutions have relatively high 𝑆(𝑘)values (>0.25). The solutions for k=2, 3, and 4 provide a higher-
level generalization of the geothermal signatures (Figure 3), while the k=8 solution allows us to further 
refine the characterization of the extracted geothermal signatures (Figure 3).  

For these 5 solutions, the locations associated with each geothermal signature share a portion of a 
physiographic province or neighbouring physiographic provinces. If more than one geothermal signatures 
are within a given physiographic province, they either characterize a spatial complexity or hydrothermal 
impacts from adjacent provinces (Figure 3). 

The k=2 solution subdivides the region into two groups (Figure A-1a). Signatures A and B of the k=3 
solution (Figure A-1b) are split up into Signatures A, B, and C of the k=4 solution (Figure A-1b). Signature 
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C for k=3 (Figure A-1c) and Signature D for k=4 (Figure A-1b) share similar very properties. Signatures 
A, B, C, and D of both the k=4 and 5 solutions (Figure A-1b,d) also possess similar properties. However, 
the k=5 solution got an entirely new signature (Signature E) (Figure A-1d). The k=8 solution (Figure A-1e) 
regrouped the k=5 solution (Figure A-1d). Signature A of the k=5 solution possesses similar properties to 
Signatures A and D of the k=8 solution. Signature B of the k=5 solution shares similar values to Signatures 
E and F of the k=8 solution. Signature C of the k=5 solution has similarities to both Signatures B and C of 
the k=8 solution. Signature D for k=5 and both Signatures G and H for k=8 also have similar values. These 
associations among signatures for k=2, 3, 4, 5, and 8 solutions are best visualized in Figures 3(a)-(e).  

It is critical to mention that although the 44 locations in the W matrices are labeled (Figures 3 and A-1) to 
be associated predominantly with a given geothermal signature (i.e., a specific region; A, B, etc.), it does 
not mean the locations are related with only one signature. Instead, it means that those locations 
predominantly dominate commensurate signatures with contributions from other signatures too.  

Figure A-2 shows the H matrices for signatures of the k=2, 3, 4, 5, and 8, which show the progression of 
the extracted signatures related to the observed 18 geothermal attributes. This progression also represents 
the transformation of signatures as the number of signatures increases. For example, Signatures A, B, and 
C of the k=3 solution (Figure A-2b) have similar properties to Signatures A, B, and both C and D of the 
k=4 solution (Figure A-2c), respectively. Signatures of A, B, C, and D for k=4 (Figure A-2c) possess 
similarities to signatures both A and E, B, C, and D for k=5 (Figure A-2d), respectively. Signatures A, B, 
C, D, and E of the k=5 solution share similar values with (1) A and E, F, B, (2) G and H, and (3) C and D 
of the k=8 solution (Figure A-2e), respectively.  
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Figure A-1: NMFk location (W) matrices for (a) k=2, (b) k=3, (c) k=4, (d) k=5, and (e) k=8. These 
matrix plots show the association of each location to the extracted geothermal signatures. High-value 
matrix entries (red) define high significance, while low-value matrix entries (green) represent low 
significance.  
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Figure A-2: NMFk attribute matrices for (a) k=2, (b) k=3, (c) k=4, (d) k=5 , and (e) k=8. These matrix 
plots show the contribution of each attribute on signatures. High-value matrix entries (red) define 
high significance, while low-value matrix entries (green) represent low significance. 
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